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SUMMARY

An experimental investigation has been made of the pressure dis-

tribution about a circular cylinder at yaw angles of 0 °, 15 °, 30 ° , 45 ° ,

and 60 ° for Reynolds numbers from below the critical value up to

about 5.0 X l0 _. The Reynolds number is based on the cylinder diameter

and the component of velocity normal to the leading edge of the cylinder.

The Mach number of the flow normal to the cylinder was less than 0.2 for

all tests. The results of the investigation indicated that, for the range

of Reynolds number near and above the critical value, the flow and force

characteristics of a yawed circular cylinder cannot be determined only

by the component of flow normal to the axis of the cylinder. For example,

the critical Reynolds number decreased from 3.65 x l0 5 for the unyawed

cylinder to 1.00 X lO 5 for the 60° yawed cylinder, and the supercritical

drag coefficient, based on the flow normal to the leading edge of the

cylinder, increased from approximately 0.18 for 0 ° yaw to approximately

0.74 for 60° yaw. In addition, the localized regions of laminar sepa-

ration that appeared in the supercritical range of Reynolds number on

the unyawed cylinder were not as well defined at yaw angles of 15° and

30° and completely disappeared at yaw angles of 45 ° and 60° .

INTRODUCTION

Theoretical investigations of the boundary layer on yawed, infi-

nitely long wings and bodies (references 1 to 3) have shown that the

characteristics of laminar boundary layers in planes at right angles

to the axis of the body can be considered as independent of the axial

flow. For those cases in which regions of turbulent flow exist, the

flow in normal planes cannot be shown to be independent of the axial

velocity. The degree to which flow fields in planes normal to the axis

of yawed, infinite bodies can be approximated by assuming that the normal
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and axial components of the flow are independent, however, is not known

for those cases in which turbulent flow exists. The accuracy of such

an approximation would be expected to depend on such variables as the

relative extents of laminar and turbulent flow in the boundary layer,

the width of the wake and the degree of turbulence in the wake, the

existence and size of localized regions of laminar separation, and the

presence and extent of separation of the turbulent boundary layer.

A knowledge of the manner in which an axial velocity influences

flow fields involving turbulent motion is important in relation to the

analysis of the aerodynamic characteristics of yawed wings and bodies.

For this reason, a short experimental investigation has been made of

the flow about a circular cylinder at several angles of yaw. A cir-

cular cylinder was chosen for two reasons. First, if the presence of

an axial component of velocity has important effects on flows involving

turbulent motion, such effects would be expected to be large and easily

determined for a circular cylinder through the critical range of Reynolds

number because wide turbulent wakes, localized regions of laminar sepa-

ration, and separation of the turbulent boundary layer are present.

Second, the characteristics of yawed circular cylinders are of interest

in connection with the problem of calculating the forces acting on slen-

der bodies of revolution at angles of attack or yaw. For this particular

problem, it is of special interest to learn whether the sharp decrease

in drag within a short range of Reynolds number, which is characteristic

of unyawed circular cylinders, is independent of the yaw angle when the

Reynolds number is based on the normal component of flow.

The investigation, conducted in the Langley low-turbulence pres-

sure tunnel, consisted of measurements of the circumferential pressure

distribution on a 2-inch-diameter circular cylinder for yaw angles of

0 °, 15°, 30° , 45 ° , and 60 ° for Reynolds numbers from below the critical

value up to about 5.0 × 105. The Reynolds number is based on the cylin-

der diameter and the component of velocity normal to the cylinder axis.
All tests were made at Mach numbers less than 0.2.

The investigation described herein was suggested by Dr. Arnold M.

Kuethe of the Office of Air Research, U. S. Air Force.
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SYMBOLS

Cdn

D

Ho n

Z

P

R n

Uo

Vn

e

v

0

cylinder drag coefficient based on flow normal to axis of

cylinder and cylinder diameter S d(sln 0)

diameter of cylinder

free-stream total pressure normal to axis of cylinder

cylinder length between tunnel walls

local static pressure

Reynolds number based on cylinder diameter and component of

velocity normal to axis of cylinder (VnD/V)

Hon - p )
pressure coefficient _ -- -2

oVn

free-stream velocity

component of velocity in direction normal to axis of cylinder

azimuth angle

free-stream kinematic viscosity

free-stream density

yaw angle

APPARATUS AND TESTS

Wind tunnel.- The investigation was conducted in the Langley low-

turbulence pressure tunnel. The test section measures 3 feet by 7.5

feet and the model, when mounted, completely spanned the 3-foot

dimension. A turbulence level of only a few hundredths of a percent is

attained in the tunnel test section by means of a large area reduction
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through the entrance cone and dense screens in the large section ahead
of the entrance cone. Pressurization and evacuation of the tunnel per-

mit a wide variation of the test Reynolds number for any given model.

A more complete description of the tunnel may be found in reference 4.

Model.- All tests were made on a 2-inch-diameter circular brass

tube fitted with a statlc-pressure orifice at each of three spanwise

stations (6 inches apart) but at the same azimuth angle. The model

extended through the tunnel walls and was connected to a drive system

which permitted rotation of the cylinder about its axis. The pressure

could therefore be measured at any desired point on the circumference

of the cylinder. The surface of the model was maintained in an aero-

dynamically smooth condition by polishing with rouge paper.

Figure i shows the experimental configuration, defines the veloc-

ities and angles (fig. l(a)), and shows the location of the static-

pressure orifices relative to the tunnel walls for the various yaw angles

(fig. l(b)). Three static-pressure orifices were used for measuring the

pressures in order to check the two-dimensionality of the flow. For the

various yaw angles, figure l(b) shows that the locations of the orifices

with respect to the wall do not coincide. This condition could not be

avoided because of space limitations in the location of the drive mechanism.

The large ratio of cylinder length to diameter (_ = 18 for _ = 0 o to

g = 36 for _ = 60 ° was chosen In order that an infinitely long cylinder

might be simulated as nearly as possible. Because of the small diameter

of the cylinder, the correction to the dynamic pressure resulting from

the presence of the tunnel walls was less than one-half of 1 percent.

This very small correction was not applied to the data.

Tests.- Circumferential pressure distributions were measured at

the three spanwise stations for several Reynolds numbers and for yaw

angles of 0°, 15 °, 30 °, 45 ° , and 60 ° . The range of Reynolds number,

based on the cylinder diameter and the component of velocity normal to

the axis of the cylinder, varied somewhat for each yaw angle but was,

in general, from below the critical range to about 5.0 × 105. In order

to maintain Mach numbers substantially below the critical value_ tank

pressures of the tunnel were regulated so that the Mach number of the

flow normal to the cylinder was less than 0.2 for all tests.

RESULTS AND DISCUSSION

Two-dimensionality of data.- Before the effect of yaw on the

characteristics of the cylinder is discussed, the question of whether

the flow phenomena are uniform across the span of the cylinder for the

different yaw angles should be considered. Comparisons for the
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different yaw angles of the pressure distributions measuredby the three
spanwise static orifices in both the subcritical and supercritical ranges
of Reynolds numberare presented in figure 2. The pressure coefficient
employed in figure 2 and succeeding figures is based on the dynamic
pressure normal to the axis of the cylinder, and the Reynolds number is
based orl the cylinder diameter and the componentof velocity normal to
the cylinder.

An inspection of the data of figure 2 indicates that there are
somevariations in the pressure distributions as measuredby the three
spanwise orifices. These variations are most noticeable in the sub-
critical range and exist even for the case in which the cylinder is
_yawed. It is not clear whether these variations result from some
interaction between the flow about the ends of the model and the tunnel-
wall boundary layer or whether variations of such magnitude would be
expected in any so-called two-dimensional flow in which extensive regions
of separation and large wakes exist. In any case, the spanwise variations
are rather small for all yaw angles and do not appear to form any con-
sistent trend with yaw angle. Consequently, if any end effects are
present in the data, such effects are thought to be small and relatively
independent of yaw angle. In the following discussion and analysis,
results are presented for one spanwise station only; this station is
the one closest to the center line of the tunnel in all cases.

Pressure distribution.- The pressure-distribution data obtained

for the circular cylinder at yaw angles of 0 °, 15 ° , 30 ° , 45 °, and 60 ° in

the Reynolds number range from below the critical up to about 5.0 × 105

are presented in figures 3 to 7. In all cases the pressure distributions

were found to be symmetrical about the horizontal diameter of the cy]-

finder; consequently, only half of each distribution is presented. An

inspection of the data in figures 3 to 7 indicates a number of points

which are perhaps worthy of com_ent. Consider first the case of zero

yaw (fig. 3). The pressure distributions for Reynolds numbers of

2.00 × 105 and 2.45 × 105 (fig. 3(a)) are typical of those obtained in the

low Reynolds number range and show early separation of the boundary layer

which implies a large wake. As compared with the pressure distributions

for Reynolds numbers below 3.0 × 105 , those for Reymolds numbers greater

than 3.5 × 105 (fig. 3(b)) are characterized by high peak negative pres-

stares and irregularities in the pressure-distribution diagram just behind

the minimum point, followed by a relatively long pressure recovery before

separation of the turbulent boundary layer occurs. The "flat" in the

pressure distributions for the Reynolds numbers of 4.54 X 105 and

5.96 x 105 and the subsequent steep pressure recovery indicate the pres-

ence of a localized region of laminar separation_ that isj laminar sepa-

ration followed by reattachment of the turbulent boundary layer (refer-

ence 5). If the Reynolds number were increased to a sufficiently high

value in the supercritical range, transition would be expected to move

ahead of the position at which laminar separation would have occurred had
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the boundary layer remained laminar, and under such circumstances, a
localized region of laminar separation would not exist. In order to
simulate a Reynolds numberof such magnitude, a 0.024-inch-diameter
wire was placed 0.5 inch ahead of the model as a meansof inducing early
transition. The resulting pressure distribution is shown in figure 3(b)
and indicates that no localized region of laminar separation is present.
The data of references 6 and 7 for circular cylinders also indicate the
presence of localized regions of laminar separation of the type discussed
in reference 5, although the existence of such regions was not clearly
recognized at the time of publication.

A comparison of the measuredpressure distributions at the lowest
Reynolds number for each yaw angle is presented in figure 8 and shows

that, in general, the subcrltical pressure distribution is relatively

insensitive to yaw except for the rearward part of the cylinder at all

yaw angles and the entire circumference of the cylinder at the yaw

angle of 60 ° . These discrepancies can be explained by the fact that,

although the laminar boundary layer over the forward part of the cyl-

inder is presumably independent of the cross flow according to refer-

ences 1 to 3j the character of the relatively large turbulent wake which

has an important influence on the pressure distribution is not inde-
pendent of the cross flow.

An inspection of the measured pressure distributions for the

different yaw angles (figs. 4 to 7) indicates that a gradual change takes

place in the distributions through and beyond the critical range as the

yaw angle is increased. Although the localized regions of separation

still exist at l_° and 30° (figs. 4 and 5), they do not appear as well-

defined as at zero yaw. Increasing the yaw angle to 45 ° and 60 ° (figs. 6

and 7) results in the complete disappearance of the localized region

of separation. These results indicate that the formation and behavior

of localized regions of laminar separation are not independent of cross

flow, at least for circular cylinders.

The value of the peak negative pressure coefficient in the super-

critical range of Reynolds number (figs. 3(b), 4(b), 5(b), 6(b), and

7(b)) is seen to be relatively insensitive to yaw angle except for

45 ° yaw, in which case the peak pressure is substantially lower than for

the other yaw angles. The reason for this reduction in minimum pressure

coefficient at 45 ° yaw is not entirely clear. The point at which the

turbulent boundary layer separates is seen to be about the same for yaw

angles of 0°, 15 °, and 30o but to move forward by relatively large amounts

for yaw angles of 45 ° and 60 ° with an accompanying increase in the neg-

ative pressure in the wake.

Drag.- The drag coefficients corresponding to the various yaw angles

have been calculated by integration of the measured pressure distributions

about the circumference of the cylinder and are presented in figure 9
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as a function of Reynolds number. The critical Reynolds numberdefined
as the Reynolds numberat which the drag decreases rapidly is approxi-
mately 3.65 X 105 for the unyawedcylinder. This value is muchhigher
than that obtained in earlier investigations such as those reported in
references 7 to 9. The lower value of the critical Reynolds number in
the earlier tests is probably due to the higher turbulence levels of the
wind tunnels. The present results comparefavorably, however, with those
of a flight investigation (reference 10) in which a value of approxi-
mately 3.0 x 105 was found for the critical Reynolds number.

An examination of the data of figure 9 indicates that, although a
large decrease in the drag coefficient with Reynolds numberoccurs for
all yaw angles except for the case of 60° yaw, this decrease becomesmuch
more gradual as the yaw angle is increased. Although a critical Reynolds
number for the yaw angles between 0° and 60° cannot be defined, the
Reynolds numberat which the drag begins to decrease generally appears
to decrease with increasing yaw angle. For the yaw angle of 60° the
decrease in drag with increasing Reynolds number is very abrupt and the
corresponding critical Reynolds number is about 1.00 X 105 as compared
to 3.65 x 105 for the unyawedcylinder. If the Reynolds numberwere
based on the stream velocity and the chord length in the stream direction,
the critical Reynolds numberfor the 60° yawed cylinder would be about
4.00 x 105. For this particular case at least, the critical Reynolds
number seemsto be more nearly independent of yaw if this Reynolds number
is based on the stream flow rather than the normal flow. The normal com-
ponent of the drag force is seen to decrease somewhatwith increase in
yaw angle in the subcrltical region (fig. 9) except for the 60° yawed
cylinder. The very large increase of the supercritical drag coefficient
with yaw angle is clearly shownin figure 10. The data of figures 9 and
lO showthat the drag characteristics of a circular cylinder cannot be
related only to the Reynolds numberbased on normal velocity component
for Reynolds numbers in and above the critical range.

CONCLUDINGFS_MAEKS

An experimental investigation has been madeof the pressure dis-
tribution about a circular cylinder at yaw angles of 0°, 15°, 30°, 45°,
and 60° for Reynolds numbersranging from below the critical value up to
about 5.0 × lOP-. The Reynolds number is based on the diameter of the

cylinder and the component of velocity normal to the axis of the cylinder.

The Mach number of the flow normal to the cylinder was less than 0.2 for

all tests. The results of the investigation indicated that for the range

of Reynolds number near and above the critical the flow and force char-

acteristics of a yawed circular cylinder cannot be determined only by

the component of flow normal to the axis of the cylinder. For example,

the critical Reynolds number decreased from 3.65 × 105 for the unyawed
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cylinder to 1.00 x 105 for the 60° yawedcylinder, and the supercritical
drag coefficient, based on the flow normal to the leading edge of the
cylinder_ increased from a value of approximately 0.18 for 0° yaw to
approximately 0.74 for 60° yaw. In addition, the localized regions of
laminar separation that appeared in the supercritical range of Reynolds
numberon the unyawedcylinder were not as well-defined at yaw angles
of 15° and 30o and completely disappeared at yaw angles of 45° and 60° .

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va._ June 22_ 1951
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Figure 1.- Experimental configuration.



NACATN 2463 ii

°
0 o_o.

H ,4% _ ,,4

Q

m

t t +

O

,-4

%
i

_. _.T__

r-_

+_

©

O
+_

O

+_

ca

O
.H

o

ol

I
t)

-r-4

a3
4-J

I1)

0

0
"r'-t
4._

U
0

4

o

d o

I

(D



12 NACA TN 2463

0

0

0
0

4)

M

o

2.4

2.0

1.6

1.2

.8

.4

_ifice

Ol

D2
03

0 20 40 60 80 I00 120 140 160 180

Azimuth angle, e
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Figure 2.- Comparison of circumferential pressure distributions measured

at three spanwise stations 6 inches apart on a 2-inch-diameter

circular cylinder at several angles of yaw.
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